Spindle Positioning in Mouse Oocytes Relies on a Dynamic Meshwork of Actin Filaments
نویسندگان
چکیده
Female meiosis in higher organisms consists of highly asymmetric divisions, which retain most maternal stores in the oocyte for embryo development. Asymmetric partitioning of the cytoplasm results from the spindle's "off-center" positioning, which, in mouse oocytes, depends mainly on actin filaments [1, 2]. This is a unique situation compared to most systems, in which spindle positioning requires interactions between astral microtubules and cortical actin filaments [3]. Formin 2, a straight-actin-filament nucleator, is required for the first meiotic spindle migration to the cortex and cytokinesis in mouse oocytes [4, 5]. Although the requirement for actin filaments in the control of spindle positioning is well established in this model, no one has been able to detect them in the cytoplasm [6]. Through the expression of an F-actin-specific probe and live confocal microscopy, we show the presence of a cytoplasmic actin meshwork, organized by Formin 2, that controls spindle migration. In late meiosis I, these filaments organize into a spindle-like F-actin structure, which is connected to the cortex. At anaphase, global reorganization of this meshwork allows polar-body extrusion. In addition, using actin-YFP, our FRAP analysis confirms the presence of a highly dynamic cytoplasmic actin meshwork that is tightly regulated in time and space.
منابع مشابه
Spire and Formin 2 Synergize and Antagonize in Regulating Actin Assembly in Meiosis by a Ping-Pong Mechanism
In mammalian oocytes, three actin binding proteins, Formin 2 (Fmn2), Spire, and profilin, synergistically organize a dynamic cytoplasmic actin meshwork that mediates translocation of the spindle toward the cortex and is required for successful fertilization. Here we characterize Fmn2 and elucidate the molecular mechanism for this synergy, using bulk solution and individual filament kinetic meas...
متن کاملSymmetry breaking in mouse oocytes requires transient F-actin meshwork destabilization.
Female meiotic divisions are extremely asymmetric, giving rise to a large oocyte and small degenerating polar bodies, keeping the maternal stores for further embryo development. This asymmetry is achieved via off-center positioning of the division spindle. Mouse oocytes have developed a formin-2-dependent actin-based spindle positioning mechanism that allows the meiotic spindle to migrate towar...
متن کاملDynamic interaction of formin proteins and cytoskeleton in mouse oocytes during meiotic maturation.
Formin-2 (Fmn2) nucleates actin filaments required for spindle migration during the metaphase of meiosis I in mouse oocytes. While recent studies showed that Fmn2 is involved in the formation of a dynamic actin meshwork on meiotic spindle and the migration of chromosomes, the precise location and the mechanism of action of Fmn2 in the mouse oocyte is not known. In this work, we show that Fmn2 i...
متن کاملF-actin mechanics control spindle centring in the mouse zygote
Mitotic spindle position relies on interactions between astral microtubules nucleated by centrosomes and a rigid cortex. Some cells, such as mouse oocytes, do not possess centrosomes and astral microtubules. These cells rely only on actin and on a soft cortex to position their spindle off-centre and undergo asymmetric divisions. While the first mouse embryonic division also occurs in the absenc...
متن کاملSpire-Type Actin Nucleators Cooperate with Formin-2 to Drive Asymmetric Oocyte Division
Oocytes mature into eggs by extruding half of their chromosomes in a small cell termed the polar body. Asymmetric oocyte division is essential for fertility [1], but despite its importance, little is known about its mechanism. In mammals, the meiotic spindle initially forms close to the center of the oocyte. Thus, two steps are required for asymmetric meiotic division: first, asymmetric spindle...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Current Biology
دوره 18 شماره
صفحات -
تاریخ انتشار 2008